Home
Class 12
MATHS
Prove that sin^2theta=(x+y)^2/(4xy) is p...

Prove that `sin^2theta=(x+y)^2/(4xy)` is possible for real values of `x` and `y` only when `x = y`, `y!=0` and `x!=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I: sec^2theta=(4x y)/((x+y)^2) is positive for all real values of x\ a n d\ y only when x=y because Statement II: t^2geq0AAt in R\ a. A b. \ B c. \ C d. D

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

Show that the equation sec^2 theta=(4xy)/(x+y)^2 is only possible when x=y

sin^2 theta =(x+y)^2/(4xy) where x,y in R gives theta if and only if

sin^2 theta= (4xy)/(x+y)^2 is true if and only if (A) x-y!=0 (B) x=-y (C) x+y!=0 (D) x!=0,y!=0

If s e c^2theta=(4x y)/((x+y)^2) is true if and only if (a) x+y!=0 (b) x=y , x!=0 (c) x=y (d) x!=0,y!=0

If x^2 + 4y ^2 - 8x +12 =0 is satified by real values of x nad y then y must lies between

Find the greatest value of x^3y^4 if 2x + 3y = 7 and x>=0,y>=0 .

If x^(y)=y^(x)" and "x=2y , then the values of x and y are ( x, y gt 0 )

Determine real values of x and y for which each statement is true (x+y)/(i)+ x- y+ 4=0