Home
Class 12
MATHS
Prove that: 2sin^2 (3pi/4)+2cos^2(pi/4)+...

Prove that: `2sin^2 (3pi/4)+2cos^2(pi/4)+s e c^2pi/3=10`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2sin^2(3pi/4)+2cos^2(pi/4)+2sec^2(pi/3)=10

2sin^2 (3pi)/4 +2cos^2 pi/4 +2sec^2 pi/3=10

Prove that: sin^2(pi/6)+cos^2(pi/3)-t a n^2pi/4=-1/2

Prove that: 2sin^2(pi/6)+cosec^2((7pi)/6)cos^2(pi/3)=3/2

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

2sin^2 pi/6 +cose c^2 (7pi)/6 cos^2 pi/3=3/2

sin^2 pi/6 +cos^2 pi/3 -tan^2 pi/4=-1/2

Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

Prove that: sin ((8pi)/3) cos ((23pi)/6)+cos ((13pi)/3) sin ((35pi)/6)=1/2

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA