Home
Class 12
MATHS
Show that cot(pi/4+x)cot(pi/4-x)=1...

Show that `cot(pi/4+x)cot(pi/4-x)=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot(pi/4-2cot^(- 1)3)=7

Prove that cot(pi/4-2cot^(- 1)3)=7

cot((-15pi)/4)

Show that the function f(x)=cot^(-1)(sinx+cosx) is decreasing on (0,\ pi//4) and increasing on (pi//4,\ pi//2) .

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

If A + B= pi/4 , show that (cot A-1) (cot B-1) =2

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

(sec2x-tan2x) equals a) tan(x-pi/4) b) tan(pi/4-x) c) cot(x-pi/4) d) tan^2(x+pi/4)

The value of "cot"(pi/(4)+theta)."cot"(pi/(4)-theta) is (i) -1 (ii) 0 (iii) 1 (iv) not defined