Home
Class 12
MATHS
Prove that: cos^2A+cos^2B-2cosA\ cos B c...

Prove that: `cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=2pi , prove that : cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0 .

If A+B+C=180^@ , then prove that cos^2 A + cos^2 B +cos^2 C=1-2cosA cosB cosC .

Prove that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

Prove that: (cos A+cos B)/(cos B-cos A)=cot((A+B)/2)cot((A-B)/2)

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos, (A+B)/2 cos, (B+C)/(2) cos, (C+A)/2

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)