Home
Class 12
MATHS
If t a nalpha=x+1,tanbeta=x-1, show that...

If `t a nalpha=x+1,tanbeta=x-1,` show that `2cot(alpha-beta)=x^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2\ t a nalpha=3t a nbeta, prove that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

if tan alpha = 2tanbeta show that (sin(alpha+beta))/(sin(alpha-beta)) = 3

If t a nalpha=x/(x+1) and t a nbeta=1/(2x+1) , then alpha+beta is equal to (a) pi//2 (b) pi//3 (c) pi//6 (d) pi//4

If t a nalpha=x/(x+1)\ a n dtanbeta=1/(2x+1),\ t h e n\ alpha+beta is equal to pi/2 b. pi/3 c. pi/6 d. pi/4

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

if tanalpha -tanbeta =x and cotbeta-cotalpha =y prove that cot(alpha-beta) = (x+y)/(xy)

If 2tanbeta+cotbeta=tanalpha , prove that cotbeta=2tan(alpha-beta)dot

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If tan(alpha-beta)=(sin2beta,)/(3-cos2beta) then (a) tanalpha=2tanbeta (b) tanbeta=2tanalpha (c) 2tanalpha=3tanbeta (d) 3tanalpha=2tanbeta