Home
Class 12
MATHS
Prove that: 2cospi/(13)cos(9pi)/(13)+cos...

Prove that: `2cos``pi/(13)``cos``(9pi)/(13)``+cos``(3pi)/(13)``+cos``(5pi)/(13)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

2 cos ""(pi)/(13) cos ""(9pi)/(13) + cos ""(3pi)/(13) + cos "" (5pi)/(13) = 0.

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15))=1/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

Prove that cos "" (2pi)/(15) cos "" (4pi)/(15) cos "" (8pi)/(15) cos "" (14pi)/(15) = (1)/(16).

Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi)/(9) = (1)/(2 ^(4)).

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that: cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=(-1)/16

Prove that: (1+cos. (pi)/8)(1+cos. (3pi)/8)(1+cos. (5pi)/8)(1+cos. (7pi)/8)=1/8

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8