Home
Class 12
MATHS
Prove that: cos 18^0 - sin 18^0 = sqrt(2...

Prove that: `cos 18^0 - sin 18^0 = sqrt(2) sin 27^0`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

Prove that : cos 9^0 + sin 9^0 = sqrt(2) sin 54^0

Prove that: cos^2 45^0-sin^2 15^0=(sqrt(3))/4

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

Prove that : cos 36 ^(@) - sin 18^(@) = (1)/(2).

Prove that : (cos 10^0 - sin 10^0)/(cos 10^0 + sin 10^0) = tan 35^0

Prove that: cos18^0=(sqrt(10+2sqrt(5)))/4 .

Prove that: sin 23^0+sin 37^0=cos7^0

Prove that : (cos 20^0 - sin 20^0)/(cos 20^0 + sin 20^0) = tan 25^0

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8