Home
Class 12
MATHS
Prove that: sin^2(pi/8+A/2)-sin^2(pi/8-A...

Prove that: `sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqrt(2)sinA

Prove that: sin(pi/10)+sin((13pi)/10)=-1/2

Prove that cos^(2)(pi/8-A/2)-cos^(2)(pi/8+A/2) = sin(pi/4). sinA=1/sqrt(2)sinA

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that; 2sin((5pi)/12)sin(pi/12)=1/2

prove that : cos(pi/12)-sin(pi/12)=1/(sqrt(2))

Prove that: cos(pi/10)-sin(pi/10)=sqrt(2)sin((3pi)/(20))

Prove that: sin^2(pi/6)+cos^2(pi/3)-t a n^2pi/4=-1/2

Evaluate : sin^(2) (pi/8 +x/2) - sin^(2) (pi/8 - x/2)

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2