Home
Class 12
MATHS
Prove that: cos((3pi)/2+x)cos(2pi+x){cot...

Prove that: `cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

The value of "cos"((3pi)/2+x)."cos"(2pi+x)["cot"((3pi)/(2)-x)+"cot"(2pi+x)] is

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x)} =cot^2x

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x\ )=sqrt(2)sinx

Prove that "cos"(pi)/9."cos"(2pi)/9."cos"(3pi)/9."cos"(4pi)/9=1/(2^(4))

Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x

Prove that cos^(3)x+cos^(3)((2pi)/3+x)+cos^(3)((2pi)/3-x)=3/4 cos 3x