Home
Class 12
MATHS
Prove that sin (n+1) x sin (n +2) x + co...

Prove that `sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin(n+1)A sin(n+2)A+cos(n+1)A cos(n+2)A=cos A

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that Sigma_(K=0)^(n) ""^nC_(k) sin K x cos (n-K)x = 2^(n-1) sin x.

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that (1+cos x)/(sin x) = (cos( x/2))/(sin (x/2))