Home
Class 12
MATHS
If tanalpha=(m)/(m+1) and tanbeta=(1)/(2...

If `tanalpha=(m)/(m+1) and tanbeta=(1)/(2m+1)`, then ` alpha+beta` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what is the value of alpha + beta?

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of tan(alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)), then write the value of alpha+beta lying in the interval (0,pi//2) .

If alphaa n dbeta are acute angles such that t a nalpha=m/(m+1)a n dt a nbeta=1/(2m+1) , prove that alpha+beta=pi/4 .

From the top of a 96 m tower, the angles of depression of two cars, on the same side of the tower are alpha" and "beta respectively. If tanalpha=1/4" and "tanbeta=1/7 , then find the distance between two cars.

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to