Home
Class 12
MATHS
Prove that sin20^(@)sin40^(@) sin60^(@)s...

Prove that `sin20^(@)sin40^(@) sin60^(@)sin80^(@)=(3)/(16)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: i) sin20^(@)sin40^(@)sin60^(@)sin80^(@)=3/16 ii) sin10^(@)sin50^(@)sin60^(@)sin70^(@)=sqrt(3)/16 iii) sin20^(@)sin40^(@)sin80^(@)=sqrt(3)/8

Prove that sin10^(@) sin 30^(@) sin 50^(@) sin 70^(@)=1/16

Prove that: sin6^(@)sin42^(@)sin66^(@)sin78^(@)=1/16

Prove that sin20^(@)sin40^(@)sin80^(@)=(sqrt(3))/(8)

Prove that sin 20^(@) sin 40^(@) sin 80^(@) = (sqrt3)/(8).

Prove that: sin20^0sin40^0sin60^0sin80^0=3/(16)

Prove that: sin20^0sin40^0sin60^0sin80^0=3/(16)

Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .