Home
Class 12
MATHS
Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt...

Prove that: `cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos(pi/4+x)+cos(pi/4-x\ )=sqrt(2)cosx

Prove that cos(pi/4+x)+cos(pi/4-x)=sqrt(2)cosx .

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x\ )=sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

Prove that: cos((3pi)/(4)+A)-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,