Home
Class 12
MATHS
Prove that: (cosalpha-cosbeta)^2+(sinalp...

Prove that: `(cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2\ \ ((alpha-beta)/2)

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

If (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=lambdacos^2((alpha-beta)/2), write the value of lambdadot

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that: cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2) .

If 3sinbeta=sin(2alpha+beta) then