Home
Class 12
MATHS
If y sin jphi=x sin(2theta+phi), show th...

If `y sin jphi=x sin(2theta+phi)`, show that `(x+y) cot(theta+phi)`
`=(y-x)cot theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y sinphi = x sin (2theta + phi) show that (x + y) cot (theta + phi) = (y-x) cot theta .

(sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

(sin ( theta -phi))/(sin theta sin phi) = cot phi - cot theta.

Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (theta + phi) = cos ( 2 theta + 2 phi).

Prove that sin(2theta)/(1-cos2theta)=cot theta

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

If sintheta=5sin(theta+phi) then tan(theta+phi)=

If determinant |cos(theta+phi) sin(theta+phi)cos2phi sin thetacostheta sinphi costheta sintheta cosphi | is a. positive b. independent of theta c. independent of phi d. none of these

(sin (theta+phi) -2 sintheta+ sin (theta-phi))/( cos(theta+phi) -2 costheta+ cos (theta-phi))= tan theta

if determinant |{:( cos (theta + phi),,-sin (theta+phi),,cos 2phi),(sin theta,,cos theta,,sin phi),(-cos theta,,sintheta,,cos phi):}| is