Home
Class 12
MATHS
Prove that : cos^3 A cos 3A + sin^3 A si...

Prove that : `cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: Sin 4A = 4 cos^3 A sin A - 4 sin^3 A cos A

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that (cos 3A +2 cos 5 A + cos 7A)/( cos A + 2 cos 3 A + cos 5A) = cos 2 A - sin 2 A tan 3 A.

Prove that (cos ^(3) A - sin ^(3) A)/( cos A - sin A ) = (2 + sin 2 A)/( 2 ).

Prove that: (sin5A cos2A-sin6A\ cos A)/(sin A\ sin2A-cos2A cos3A)=t a n A

Prove that (sinA+cosA)^3 = 3(sinA+cosA) - 2 (sin^3A+cos^3A)

Prove that : (cos 9x - cos 5x)/(sin 17x - sin 3x) = (-sin 2x)/(cos 10x)

Prove that: (cos4A+cos3A+cos2A)/(sin4A+sin3A+sin2A)=cot3A

Prove that: (cos2A+cos3A+cos4A)/(sin2A+sin3A+sin4A)= cot3A

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3