Home
Class 12
MATHS
Prove that 2tan^(-1)(sqrt((a-b)/(a+b))ta...

Prove that `2tan^(-1)(sqrt((a-b)/(a+b))tantheta/2)=cos^(-1)((acostheta+b)/(a+bcostheta))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(sqrt((a-b)/(a+b))tan(theta/2))=cos^(-1)((acostheta+b)/(a+bcostheta))

prove that 2tan^-1(sqrt((a-b)/(a+b))tan(theta/2)) = cos^-1((acostheta+b)/(a+bcostheta))

Prove that 2 tan^(-1) (sqrt((a-b)/(a+b)) "tan"(theta)/(2))=cos^(-1) ((a cos theta +b)/(a +b cos theta))

The value 2tan^(-1)[sqrt((a-b)/(a+b))tantheta/2] is equal to cos^(-1)((acostheta+b)/(a+bcostheta)) (b) cos^(-1)((a+bcostheta)/(acostheta+b)) cos^(-1)((acostheta)/(a+bcostheta)) (d) cos^(-1)((bcostheta)/(acostheta+b))

The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)((acostheta+b)/(a+bcostheta)) (b) cos^(-1)((a+bcostheta)/(acostheta+b)) cos^(-1)((acostheta)/(a+bcostheta)) (d) cos^(-1)((bcostheta)/(acostheta+b))

If a , b , c >0 and s=(a+b+c)/2 , prove that tan^(-1)sqrt((2a s)/(b c))+tan^(-1)sqrt((2b s)/(c a))+tan^(-1)sqrt((2c s)/(a b))=pi

Prove that : tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) =' pi'

If a , b , c >0 and s=(a+b+c)/2,p rov et h a t tan^(-1)sqrt((2a s)/(b c))+tan^(-1)sqrt((2b s)/(c a))+tan^(-1)sqrt((2c s)/(a b))=pi

Prove that: a) (sin2theta)/(1+cos2theta) = tantheta b) (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta