Home
Class 12
MATHS
Prove that: cot^2A-tan^2A=4\ cos2A cos e...

Prove that: `cot^2A-tan^2A=4\ cos2A cos e c2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cot^2A-tan^2A=4\ cot2A cos e c2A

Prove that: sin^(2) A tan A + cos^(2) A cot A + 2 sin A cos A= tan A + cot A

Prove that: (cos2A\ cos3A-cos2Acos7A+cos10 A cos A)/(sin4A\ sin3A-sin2A sin5A+sin4Asin7A )=cot6A\ cot5A

Prove: tan^2A+cot^2A=sec^2A cos e c^2A-2

Prove: cot^2A cos e c^2B-cot^2B cos e c^2A=cot^2A-cot^2B .

Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(sec^(-1)2)+cot^2(cos e c^(-1)3)=11

Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(sec^(-1)2)+cot^2(cos e c^(-1)3)=11

Prove that : (1 + cot A + tan A) (sin A — cos A) = sin A tan A — cot A cos A.

Prove that : (1 + cot A + tan A) (sin A — cos A) = sin A tan A — cot A cos A.

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC