Home
Class 12
MATHS
Prove that : (cos x + cos y)^2 + (sin x ...

Prove that : `(cos x + cos y)^2 + (sin x - sin y)^2 = 4 cos^2\ (x+y)/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)

Prove that : (sin (x+y))/(sin (x-y) )= (sin x. cos y + cos x . Sin y)/(sin x. cos y-cos x. sin y)

x = "sin" t, y = "cos" 2t

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

If cos(y-z)+cos(z-x)+cos(x-y)=-3/2, prove that cos x + cos y + cos z = 0 = sin x + siny + sinz.