Home
Class 12
MATHS
Prove that: s in^4pi/8+s in^4(3pi)/8+s i...

Prove that: `s in^4pi/8+s in^4(3pi)/8+s in^4(5pi)/8+s in^4(7pi)/8=3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II sin^4pi/8+sin^4 (3pi)/8+sin^4(5pi)/8sin^4(7pi)/8=3/2

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2

Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that: sin((3pi)/8-5)cos( pi/8+5)+cos((3pi)/8-5)sin(pi/8+5)=1

Prove that: cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)""(7pi)/(8) = 3/2.