Home
Class 12
MATHS
If alpha and beta are the solution of th...

If `alpha and beta` are the solution of the equation `a cos theta + b sin theta = c`, then show that : `cos (alpha + beta) = (a^2 - b^2)/(a^2 + b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha "and " beta be two distinct real numbers such that (alpha-beta) ne 2 n pi for any integer n satisfying the equations a cos theta + b sin theta =c then prove that (i) "cos " (alpha+ beta) =(a^(2) -b^(2))/(a^(2) +b^(2)) " "(ii) "sin " (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then show that "cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2) (ii) cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)

If alpha\ &\ beta satisfy the equation, a cos2theta+b sin2theta=c then prove that : cos^2alpha+cos^2beta=(a^2+a c+b^2)/(a^2+b^2)

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If sin alpha+sin beta=a\ a n d\ cosalpha+cosbeta=b , show that : cos(alpha+beta)=(b^2-a^2)/(b^2+a^2)

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?