Home
Class 12
MATHS
If cos theta=(cos alpha cos beta)/(1-sin...

If `cos theta=(cos alpha cos beta)/(1-sin alpha sin beta),` prove that one value of `tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of (tan) theta/2=(tan alpha/2-tan beta/2)/(1-t a n alpha/2 tan beta/2).

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that tan alpha = 2 tan beta.

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan beta is

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If cos alpha+ cos beta =1/3 and sin alpha+sin beta=1/4 prove that cos[(alpha-beta)/2] =+-(5/24)

If cos theta=cos alpha cos beta then tan((theta+alpha)/2) tan((theta-alpha)/2)= (i) tan^2(alpha/2) (ii) tan^2(beta/2) (iii) tan^2(theta/2) (iv) cot^2(beta/2)

Prove that (cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)