Home
Class 12
MATHS
For any triangle ABC, prove that(b^2-c^2...

For any triangle ABC, prove that`(b^2-c^2)/(a^2)sin2A+(c^2-a^2)/(b^2)sin2B+(a^2-b^2)/(c^2)sin2C=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta A B C , prove that: ((b^2-c^2)/(a^2))sin2A+((c^2-a^2)/(b^2))sin2B+((a^2-b^2)/(c^2))sin2C=0

In sub - part (i) to (x) choose the correct option and in sub - part (xi) to (xy), answer the questions as intructed . In any triangle ABC, (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))"sin"2C= ________

In any DeltaABC , prove that, (b^(2)-c^(2))/a^(2)sin2A+(c^(2)-a^(2))/b^(2)sin2B+(a^(2)-b^(2))/c^(2)sin2C=0 .

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any DeltaABC , prove that : (b^2 -c^2) sin^2 A + (c^2 -a^2) sin^2 B + (a^2 - b^2) sin^2 C = 0

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))

For any triangle ABC, prove that (b^2 - c^2) cotA + (c^2 - a^2) cotB + (a^2 - b^2) cotC = 0

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

In any DeltaABC , prove that : (b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)