Home
Class 12
MATHS
For any triangle ABC, prove that(b^2 - c...

For any triangle ABC, prove that`(b^2 - c^2) cotA + (c^2 - a^2) cotB + (a^2 - b^2) cotC = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta A B C , prove that: (b^2-c^2)cotA+(c^2-a^2)cot B+(a^2-b^2)cotC=0

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0

For any triangle ABC, prove that a(bcosC-ccosB)=b^2-c^2

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle A B C , prove that: Delta=(b^2+c^2-a^2)/(4cotA) .

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

For any triangle ABC, prove that (b^2-c^2)/(a^2)sin2A+(c^2-a^2)/(b^2)sin2B+(a^2-b^2)/(c^2)sin2C=0