Home
Class 12
MATHS
In any triangle, if (a^(2) - b^(2))/(a^(...

In any triangle, if `(a^(2) - b^(2))/(a^(2) + b^(2)) = (sin (A - B))/(sin (A + B))`, then prove that the triangle is either right angled or isosceles

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC, (a^(2)+b^(2))/(a^(2)-b^(2))=(sin(A+B))/(sin(A-B)) , prove that the triangle is isosceles or right triangle.

If in a triangle ABC, (a^(2)-b^(2))/(a^(2)+b^(2)) = sin(A-B)/sin(A+B) the triangle is

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In DeltaABC, (b^(2)+c^(2))sin(B-C)=(b^(2)-c^(2))sin(B+C) , then prove that the triangle in either isosceles or right angled.

If a cosA=b cos B , then prove that either the triangle is isosceles or right triangle.

In a triangle ABC, 8R^2=a^2+b^2+c^2 prove that the triangle is right angled

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

In a triangle ABC sin (A/2) sin (B/2) sin (C/2) = 1/8 prove that the triangle is equilateral