Home
Class 12
MATHS
In any triangle ABC, show that : 2a sin ...

In any triangle ABC, show that : `2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)

For triangle ABC, show that: sin((A+B)/(2))-cos(C)/(2)=0

For triangle ABC, show that "sin"(A+B)/2="cos"C/2

In any triangle A B C , prove that following: sin((B-C)/2)=(b-c)/a cos (A/2)

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle A B C prove that: sin((B-C)/2)=((b-c)/a)cosA/2

In a Delta ABC, show that 2R^(2) sin A sin B sin C=Delta.

In any triangle A B C , prove that following: \ \ asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+c sin(C/2)sin((A-B)/2)=0.