Home
Class 12
MATHS
In any DeltaABC, prove that Delta=(b^(2)...

In any `DeltaABC`, prove that `Delta=(b^(2)+c^(2)-a^(2))/(4cotA)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that: Delta=(b^2+c^2-a^2)/(4cotA) .

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0

In any DeltaABC , prove that Delta=(a^(2)-b^(2))/2(sinAsinB)/(sin(A-B)) .

In any DeltaABC , prove that, (b^(2)-c^(2))/a^(2)sin2A+(c^(2)-a^(2))/b^(2)sin2B+(a^(2)-b^(2))/c^(2)sin2C=0 .

In any DeltaABC , prove that ac""cosB-bc""cosA=a^(2)-b^(2)

In a DeltaABC prove that cotA+cotB+cotC=(a^(2)+b^(2)+c^(2))/(4Delta)

In any DeltaABC , prove that : (b^2 + c^2 - a^2)/(c^2 +a^2 -b^2) = (tan B)/(tan A)

In any DeltaABC , prove that (a-b)^(2)cos^(2)(C/2)+(a+b)^(2)sin^(2)(C /2)=c^(2) .

In any Delta ABC , prove that a(bcosC-c""cosB)=b^(2)-c^(2) .

In any DeltaABC , prove that : (b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))