Home
Class 12
MATHS
If acos^2(C/2)+c cos^2(A/2)=(3b)/2. To p...

If `acos^2(C/2)+c cos^2(A/2)=(3b)/2`. To prove: `cot(A/2),cot(B/2),cot(C/2)` are in A.P.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P. , then

In DeltaABC , if a,b,c are in A.P. prove that: cot(A/2),cot(B/2), cot(C/2) are also in A.P.

In DeltaABC, acos^(2)C/2+ccos^(2)A/2=(3b)/(2) , then prove that the sides of DeltaABC , are in A.P.

If in a triangle A B C ,acos^2(C/2)+ c cos^2(A/2)=(3b)/2, then the sides a ,b ,a n dc are in A.P. b. are in G.P. c. are in H.P. d. satisfy a+b=cdot

If a^(2), b^(2),c^(2) are in A.P prove that (a)/(b+c), (b)/(c+a) ,(c)/(a+b) are in A.P.

If three sides a,b,c of a triangle ABC are in arithmetic progression, then the value of cot(A/2), cot(B/2), cot(C/2) are in

If a^(2) , b^(2) , c^(2) are in A.P , pove that a/(a+c) , b/(c+a) , c/(a+b) are in A.P .

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

In triangleABC if 2c cos^2(A/2)+2acos^2(C/2)-3b=0 prove that a, b, c are in A.P.

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=