Home
Class 12
MATHS
In any DeltaABC, prove that : (b^2 - c^2...

In any `DeltaABC`, prove that : `(b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that : (b^2 -c^2) sin^2 A + (c^2 -a^2) sin^2 B + (a^2 - b^2) sin^2 C = 0

In any DeltaABC , prove that : (b^2 + c^2 - a^2)/(c^2 +a^2 -b^2) = (tan B)/(tan A)

In any DeltaABC , prove that, (b^(2)-c^(2))/a^(2)sin2A+(c^(2)-a^(2))/b^(2)sin2B+(a^(2)-b^(2))/c^(2)sin2C=0 .

In a Delta A B C , prove that: ((b^2-c^2)/(a^2))sin2A+((c^2-a^2)/(b^2))sin2B+((a^2-b^2)/(c^2))sin2C=0

In any triangle A B C , prove that following: (a^2-c^2)/(b^2)=("sin"(A-C))/("sin"(A+C))

In any DeltaABC , prove that: (a+b-c)/(a+b+c) = tan (A/2) tan (B/2)

In any A B C , prove that: Delta=(a^2-b^2)/2dot(sinAsinB)/(sin(A-B))

In any DeltaABC , prove that asin(A/2+B)=(b+c)sin""A/2

In any DeltaABC , prove that (sin B)/(sin(B+C) ) = b/a

In any DeltaABC , prove that acos""((B-C)/2)=(b+c)sin""(A/2) .