Home
Class 12
MATHS
Evaluate : sin[pi/2 - sin^(-1) (- sqrt(3...

Evaluate : `sin[pi/2 - sin^(-1) (- sqrt(3)/2)]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplified value of sin [ (pi)/(2) - sin^(-1) (- (sqrt3)/(2)) ] is :

Evaluate : sin^-1 (- sqrt(3)/2)

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

Find the value of : sin^(-1) (sqrt(3)/2)

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

Find the value of the following sin[pi/3 - sin^(-1) . (1/2)]

sin^(-1)(sin((2pi)/3))

The value of sin^-1 (sqrt(3)/2)+ sin^-1 (1/sqrt(2)) is equal to (A) sin^-1 ((sqrt(3+1))/(2sqrt(2))) (B) pi-sin^-1 ((sqrt(3+1))/(2sqrt(2))) (C) pi+sin^-1 ((sqrt(3+1))/(2sqrt(2))) (D) none of these