Home
Class 12
MATHS
Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/...

Prove that `tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

Prove that: tan^-1 (1/3)+tan^-1 (2/9)+tan^-1 (4/33)+… tooo= pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

prove that 2tan^-1 (1/3)+tan^-1 (1/7)=pi/4

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)