Home
Class 12
MATHS
Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13...

Prove that: `sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that sin^(-1)(4/5)+tan^(-1)(5/12)+cos^(-1)(63/65)=pi/2

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65))

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)

Prove that: sin^(-1)((12)/(13))+cos^(-1)(4/5)+tan^(-1)((63)/(16))=pi