Home
Class 12
MATHS
Prove that cot^(-1) 9 + cosec^(-1) sqrt(...

Prove that `cot^(-1) 9 + cosec^(-1) sqrt(41)/4 = pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 4(cot^(- 1)3+c o s e c^(- 1)sqrt(5))=pi

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

Prove that 1+cot^(2) theta = cosec^(2) theta

Prove that cot(pi/4-2cot^(- 1)3)=7

Prove that cot(pi/4-2cot^(- 1)3)=7

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Evaluate the following : tan ( cosec^(-1) sqrt(41)/4)

Prove that : (cot^(2) A)/(cosec A - 1) - 1 = cosec A

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)