Home
Class 12
MATHS
Prove that tan("pi"/4+1/2"cos"^(-1)"\ \ ...

Prove that `tan("pi"/4+1/2"cos"^(-1)"\ \ ""a"/"b")+"tan\ "("pi"/4+1/2"cos"^(-1)"\ \ ""a"/"b")=(2"b")/"a"` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan [(pi)/(4) + (1)/(2) cos^(-1)""(a)/(b)] + tan[(pi)/(4) - (1)/(2) cos^(-1)""(a)/(b)] = (2b)/(a) .

Prove that tan(pi/4+1/2 cos^-1(a/b))+tan(pi/4-1/2 cos^-1(a/b))=(2b)/a

Prove that tan(pi/4+1/2 cos^-1(a/b))+tan(pi/4-1/2 cos^-1(a/b))=(2b)/a

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .