Home
Class 12
MATHS
Solve: cos^(- 1)xsqrt(3)+cos^(- 1)x=pi/2...

Solve: `cos^(- 1)xsqrt(3)+cos^(- 1)x=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve cos^(-1)x >cos^(-1)x^2

Solve cos^(-1)x >cos^(-1)x^2

Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/(3)

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Of the solution of equation "sin"(tan^(-1)x)=sqrt(4-["sin"(cos^(-1)x)+"cos"(sin^(-1)x)]^2) is a , then sin^(-1)a+cos^(-1)a=pi/2 2sin^(-1)a+cos^(-1)a=pi/2 sin^(-1)a+3cos^(-1)a=(3pi)/2 tan^(-1)a+cos^(-1)a=pi/2

Solve: "cos"{cos^(-1)(x)}=0

Solve: sin^(-1)x=pi/6+cos^(-1)x