Home
Class 12
MATHS
Prove that: tan^(-1)(2/11)+tan^(-1)(7/24...

Prove that: `tan^(-1)(2/11)+tan^(-1)(7/24)`=`tan^(-1)(1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1)(1/70)-tan^(-1)(1/99)=tan^(-1)(1/239)

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4