Home
Class 12
MATHS
Prove that : tan^(-1)(1/2) + tan^(-1)(1/...

Prove that : `tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4`

Text Solution

AI Generated Solution

To prove that \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \frac{\pi}{4} \), we will evaluate both expressions step by step. ### Step 1: Evaluate \( x = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \) Using the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4