Home
Class 12
MATHS
Prove that : tan^(-1)( (2a-b)/(bsqrt(3))...

Prove that : `tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0

Prove that : tan ^(-1) ""(1)/(2) = (pi)/(4) - tan ^(-1) ""(1)/(3)

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^(-1) (1/2tan2A) + tan^(-1) (cotA) + tan^(-1) (cot^3A) =0

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi