Home
Class 12
MATHS
Prove that : tan^(-1) 1 + tan^(-1) 2 + t...

Prove that :` tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan ^(-1). 3/4+ tan^(-1) . 3/5 - tan^(-1) . 8/19 = pi/4

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4