Home
Class 12
MATHS
Prove that : tan^(-1) x + cot^(-1) (1+x)...

Prove that : `tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))