Home
Class 12
MATHS
Prove that: sin^(-1)(12)/(13)+cos^(-1)4/...

Prove that: `sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi .

Prove that : sin^(-1)(5/13) +cos ^(−1)(3/5)=tan (−1)(63/16) ​

Show that sin^(-1)(5/13)+cos^(-1)(3/5)=tan^(-1)(63/16) .

Column I, Column II sin^(-1)4/5+2tan^(-1)1/3= , p. pi/6 sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)= , q. pi/2 If A=tan^(-1)(xsqrt(3))/(2lambda-x)a n dB=tan^(-1)((2x-lambda)/(lambdasqrt(3))) then the value of a-Bi s , r. pi/4 tan^(-1)1/7+2tan^(-1)1/3= , s. pi

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: cos^(-1)4/5+cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi