Home
Class 12
MATHS
Prove that:(9pi)/8-9/4sin^(-1)1/3=9/4sin...

Prove that:`(9pi)/8-9/4sin^(-1)1/3=9/4sin^(-1)(2sqrt(2))/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2\ sqrt(2))/3)

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)(sin((9pi)/4))

Prove that: sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA

Prove that: sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqrt(2)sinA

Prove that: sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)=1/(64)

Prove that sin^-1[3/5]+sin^-1[4/5]=pi/2

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)