Home
Class 12
MATHS
Prove that : cos(sec^(-1) x+ cosec^(-1) ...

Prove that : `cos(sec^(-1) x+ cosec^(-1) x) =0, |x| ge 1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sec^(-1) x gt cosec^(-1) x

Prove that : (sec^(2)A-1)("cosec"^(2)A-1)=1

Find the maximum value of (sec^(-1) x) (cosec^(-1) x), x ge 1

Prove that: sec^(2)x+"cosec"^(2)xge4

Draw the graph of y=sec^(-1)x+cosec^(-1)x

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that (sec^ 2θ−1)(cosec^ 2θ−1)=1

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

int1/(sec x + cosec x) dx

int1/(sec x + cosec x) dx