Home
Class 12
MATHS
The value of 2 tan^(-1) (cosec tan^(-1) ...

The value of `2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, then the value of 3 cosec^(2) (tan^(-1) u + tan^(-1) v + tan^(-1 w) is ____

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x