Home
Class 12
MATHS
If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 t...

If `tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2` then prove that `yz+zx+xy=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi , then prove that x + y + 2z = xz^2 + yz^2 + 2xyz

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=