Home
Class 12
MATHS
If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi ...

If `tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi` prove that `x+y+z=xyz`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi/2,t h e n x+y+z-x y z=0 x+y+z+x y z=0 x y+y z+z x+1=0 x y+y z+z x-1=0

tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi , then prove that x + y + 2z = xz^2 + yz^2 + 2xyz

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =