Home
Class 12
MATHS
Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1...

Solve : `tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4 , then find the value of x .

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4, then find the value of xdot

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3