Home
Class 12
MATHS
Solve : sin^(-1)((2a)/(1+a^2)) + cos^(-1...

Solve : `sin^(-1)((2a)/(1+a^2)) + cos^(-1)( (1-b^2)/(1+b^2)) = 2 tan^(-1) x,|a|le1, |b|ge 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

tan[1/2 sin^(-1)((2a)/(1+a^2)) + 1/2 cos^(-1)((1-a^2)/(1+a^2))]=

Solve : sin^(-1)((2alpha)/(1+alpha^2)) + sin^(-1)( (2beta)/(1+beta^2)) =2 tan^(-1) x, |alpha|le1, |beta|le1

Prove that : cos ^(-1) ((1- a^(2))/(1+a^2)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .((a+b)/(1-ab))

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

If sin^(-1)((2a)/(1+a^2))-cos^(-1)((1-b^2)/(1+b^2))=tan^(-1)((2x)/(1-x^2)) , then prove that x=(a-b)/(1+a b)

If |a|lt1|b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is