Home
Class 12
MATHS
Prove that sin^(2)alpha + sin^(2)beta + ...

Prove that `sin^(2)alpha + sin^(2)beta + 2sinalpha sinbetacos(alpha+beta)=sin^(2)(alpha+beta)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin betacos(alpha+beta) then (d^(3)y)/(dalpha^(3))=?

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )