Home
Class 12
MATHS
If A+B+C=pi, prove that: cotB cotC + cot...

If `A+B+C=pi`, prove that: `cotB cotC + cotC cotA + cotA cotB=1`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .

In DeltaABC , prove that: cotA+cotB+cotC = cotAcotBcotC+"cosec"A"cosec"B"cosec"C

Prove that : cosec A- cot A =(1)/(cosecA+cotA)

If A+B+C=pi , prove that : (cotA+cotB)/(tanA+tanB) + (cotB+cotC)/(tanB+tanC) + (cotC+cotA)/(tanC+tanA) =1

i) If A+B=pi/4 prove that: (cotA-1)(cotB-1)=2

If A+B=pi/4 , prove that: (1+t a n A)(1+t a n B)=2 (cotA-1)(cotB-1)=2